143 research outputs found

    Quantitative Graded Semantics and Spectra of Behavioural Metrics

    Full text link
    Behavioural metrics provide a quantitative refinement of classical two-valued behavioural equivalences on systems with quantitative data, such as metric or probabilistic transition systems. In analogy to the classical linear-time/branching-time spectrum of two-valued behavioural equivalences on transition systems, behavioural metrics come in various degrees of granularity, depending on the observer's ability to interact with the system. Graded monads have been shown to provide a unifying framework for spectra of behavioural equivalences. Here, we transfer this principle to spectra of behavioural metrics, working at a coalgebraic level of generality, that is, parametrically in the system type. In the ensuing development of quantitative graded semantics, we discuss presentations of graded monads on the category of metric spaces in terms of graded quantitative equational theories. Moreover, we obtain a canonical generic notion of invariant real-valued modal logic, and provide criteria for such logics to be expressive in the sense that logical distance coincides with the respective behavioural distance. We thus recover recent expressiveness results for coalgebraic branching-time metrics and for trace distance in metric transition systems; moreover, we obtain a new expressiveness result for trace semantics of fuzzy transition systems. We also provide a number of salient negative results. In particular, we show that trace distance on probabilistic metric transition systems does not admit a characteristic real-valued modal logic at all

    Quantitative Hennessy-Milner Theorems via Notions of Density

    Get PDF
    The classical Hennessy-Milner theorem is an important tool in the analysis of concurrent processes; it guarantees that any two non-bisimilar states in finitely branching labelled transition systems can be distinguished by a modal formula. Numerous variants of this theorem have since been established for a wide range of logics and system types, including quantitative versions where lower bounds on behavioural distance (e.g. in weighted, metric, or probabilistic transition systems) are witnessed by quantitative modal formulas. Both the qualitative and the quantitative versions have been accommodated within the framework of coalgebraic logic, with distances taking values in quantales, subject to certain restrictions, such as being so-called value quantales. While previous quantitative coalgebraic Hennessy-Milner theorems apply only to liftings of set functors to (pseudo)metric spaces, in the present work we provide a quantitative coalgebraic Hennessy-Milner theorem that applies more widely to functors native to metric spaces; notably, we thus cover, for the first time, the well-known Hennessy-Milner theorem for continuous probabilistic transition systems, where transitions are given by Borel measures on metric spaces, as an instance of such a general result. In the process, we also relax the restrictions imposed on the quantale, and additionally parametrize the technical account over notions of closure and, hence, density, providing associated variants of the Stone-Weierstraß theorem; this allows us to cover, for instance, behavioural ultrametrics.publishe

    In Vivo Evaluation of an Injectable Premixed Radiopaque Calcium Phosphate Cement

    Get PDF
    In this work a radiopaque premixed calcium phosphate cement (pCPC) has been developed and evaluated in vivo. Radiopacity was obtained by adding 0–40 % zirconia to the cement paste. The effects of zirconia on setting time, strength and radiopacity were evaluated. In the in vivo study a 2 by 3.5 mm cylindrical defect in a rat vertebrae was filled with either the pCPC, PMMA or bone chips. Nano-SPECT CT analysis was used to monitor osteoblast activity during bone regeneration. The study showed that by adding zirconia to the cement the setting time becomes longer and the compressive strength is reduced. All materials evaluated in the in vivo study filled the bone defect and there was a strong osteoblast activity at the injury site. In spite of the osteoblast activity, PMMA blocked bone healing and the bone chips group showed minimal new bone formation. At 12 weeks the pCPC was partially resorbed and replaced by new bone with good bone ingrowth. The radiopaque pCPC may be considered to be used for minimal invasive treatment of vertebral fractures since it has good handling, radiopacity and allows healing of cancellous bone in parallel with the resorption of the cement

    Men Scare Me More: Gender Differences in Social Fear Conditioning in Virtual Reality

    Get PDF
    Women nearly twice as often develop social anxiety disorder (SAD) compared to men. The reason for this difference is still being debated. The present study investigates gender differences and the effect of male versus female agents in low (LSA) and high socially anxious (HSA) participants regarding the acquisition and extinction of social fear in virtual reality (VR). In a social fear conditioning (SFC) paradigm, 60 participants actively approached several agents, some of which were paired with an aversive unconditioned stimulus (US) consisting of a verbal rejection and spitting simulated by an aversive air blast (CS C), or without an US (CS). Primary outcome variables were defined for each of the 4 levels of emotional reactions including experience (fear ratings), psychophysiology (fear-potentiated startle), behavior (avoidance), and cognition (recognition task). Secondary outcome variables were personality traits, contingency ratings, heart rate (HR), and skin conductance response (SCR). As hypothesized, fear ratings for CS C increased significantly during acquisition and the differentiation between CS C and CS vanished during extinction. Additionally, women reported higher fear compared to men. Furthermore, a clear difference in the fear-potentiated startle response between male CS C and CS at the end of acquisition indicates successful SFC to male agents in both groups. Concerning behavior, results exhibited successful SFC in both groups and a general larger distance to agents in HSA than LSA participants. Furthermore, HSA women maintained a larger distance to male compared to female agents. No such differences were found for HSA men. Regarding recognition, participants responded with higher sensitivity to agent than object stimuli, suggesting a higher ability to distinguish the target from the distractor for social cues, which were on focus during SFC. Regarding the secondary physiological outcome variables, we detected an activation in HR response during acquisition, but there were no differences between stimuli or groups. Moreover, we observed a gender but no CS+/CS- differences in SCR. SFC was successfully induced and extinguished according to the primary outcome variables. VR is an interesting tool to measure emotional learning processes on different outcome levels with enhanced ecological validity. Future research should further investigate social fear learning mechanisms for developing more efficient treatments of SAD

    Characterization of a transport system for anionic amino acids in human fibroblast lysosomes

    Full text link
    -Aspartate and -glutamate are transported into human fibroblast lysosomes by a single, low Km, Na+-independent transport system, which has been provisionally named lysosomal system d. This system resembles the Na+-dependent plasma membrane system xAG-, although these differences have been observed: (1) lysosomal system d recognizes the - as well as the -isomers of both aspartate and glutamate, whereas only for aspartate is the -isomer recognized by system xAG-; (2) the anion -homocysteate is not accepted by system xAG-, but is an effective inhibitor of lysosomal system d; (3) N-methyl, [alpha]-methyl, and [omega]-hydroxamate derivatives of both aspartate and glutamate inhibit lysosomal system d, but only the aspartate derivatives are accepted by system xAG-; (4) lysosomal system d shows a preference for the substrate amino group in the [alpha]-position, a preference not seen for system xAG-. These points imply differences at the two recognition sites with respect to substrate length, size and rotation, with the lysosomal site generally being the less restrictive.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/27627/1/0000002.pd

    Fast Visuomotor Processing of Redundant Targets: The Role of the Right Temporo-Parietal Junction

    Get PDF
    Parallel processing of multiple sensory stimuli is critical for efficient, successful interaction with the environment. An experimental approach to studying parallel processing in sensorimotor integration is to examine reaction times to multiple copies of the same stimulus. Reaction times to bilateral copies of light flashes are faster than to single, unilateral light flashes. These faster responses may be due to ‘statistical facilitation’ between independent processing streams engaged by the two copies of the light flash. On some trials, however, reaction times are faster than predicted by statistical facilitation. This indicates that a neural ‘coactivation’ of the two processing streams must have occurred. Here we use fMRI to investigate the neural locus of this coactivation. Subjects responded manually to the detection of unilateral light flashes presented to the left or right visual hemifield, and to the detection of bilateral light flashes. We compared the bilateral trials where subjects' reaction times exceeded the limit predicted by statistical facilitation to bilateral trials that did not exceed the limit. Activity in the right temporo-parietal junction was higher in those bilateral trials that showed coactivation than in those that did not. These results suggest the neural coactivation observed in visuomotor integration occurs at a cognitive rather than sensory or motor stage of processing
    corecore